EE 508 Lecture 19

Sensitivity Functions

- Comparison of Filter Structures
- Performance Prediction

What causes the dramatic differences in performance between these two structures? How can the performance of different structures be compared in general?

Equal R, Equal C, Q=10 Pole Locus vs GB_{N}

$$
T(s)=-K \frac{\overline{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}\left(1+\frac{R_{1}}{R_{3}}\right)+\frac{1}{R_{4} C_{2}}+\frac{1}{R_{2} C_{2}}\left(1+\frac{C_{2}}{C_{1}}\right)\right]+\left[\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+\left(R_{2} / R_{3}\right)+\left(R_{2} / R_{4}\right)\right)}{R_{1} R_{2} C_{1} C_{2}}\right]}
$$

Review from last time

Modeling of the Amplifiers

Different implementations of the amplifiers are possible Have used the op amp time constant in these models $\tau=\mathrm{GB}^{-1}$

Review from last time

Effects of GB on poles of KRC and -KRC Lowpass Filters

GB effects in KRC and -KRC Lowpass Filter

$$
\begin{aligned}
& \left.T(s)=\frac{K_{0} \omega_{0}^{2}}{s^{2}+s\left[\frac{\omega_{0}}{Q}\right]+\omega_{0}^{2}+K_{0} \tau s\left(s^{2}+s\left[\frac{\omega_{0}}{Q}\left(1+K_{0} Q \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}\right)\right]+\omega_{0}^{2}\right.}\right) \\
& 1 \\
& T(s)=-K_{0} \frac{\overline{R_{1} R_{2} C_{1} C_{2}}}{\left(s^{2}+s\left[\frac{1}{R_{1} C_{1}}\left(1+\frac{R_{1}}{R_{3}}\right)+\frac{1}{R_{4} C_{2}}+\frac{1}{R_{2} C_{2}}\left(1+\frac{C_{2}}{C_{1}}\right)\right]+\left[\frac{1+\left(R_{1} / R_{3}\right)\left(1+K_{0}\right)+\left(R_{1} / R_{4}\right)\left(1+\left(R_{2} / R_{3}\right)+\left(R_{2} / R_{1}\right)\right)}{R_{1} R_{2} C_{1} C_{2}}\right]\right)} \\
& +\tau \mathrm{s}\left(1+\mathrm{K}_{0}\right)\left(\mathrm{s}^{2}+\mathrm{s}\left[\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}\right)+\frac{1}{\mathrm{R}_{4} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}\left(1+\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right)\right]+\left[\frac{1+\left(\mathrm{R}_{1} / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{1} / \mathrm{R}_{4}\right)\left(1+\left(\mathrm{R}_{2} / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\right)}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}\right]\right)
\end{aligned}
$$

- Analytical expressions for ω_{0}, Q, poles, zeros, and other key parameters are unwieldly in these circuits and as bad or worse in many other circuits (require solution of $3^{\text {rd }}$ order polynomial!!)
- Sensitivity metrics give considerable insight into how filters perform and are widely used to assess relative performance
- Need sensitivity characterization of real numbers as well as complex quantities such as poles and zeros
- If sensitivity expressions are obtained for a given structure, it can be catalogued rather than recalculated
- Since analytical expressions for key parameters are unwieldly in even simple circuits, obtaining expressions for the purpose of calculating sensitivity appears to be a formidable task!

Sensitivity Characterization of Filter Structures

Let F be a filter characteristic of interest
F might be ω_{0} or Q of a pole or zero, a band edge, a peak frequency, a BW, $T(s),|T(j \omega)|$, a coefficient in $T(s)$, etc

Can express F in terms of all components and model parameters as

$$
\begin{aligned}
& F=f\left(R_{1}, \ldots R_{k 1}, C_{1}, \ldots C_{k 2}, L_{11}, \ldots L_{k 3}, T_{1}, \ldots T_{k 4}, W_{1}, \ldots W_{k 5}, L_{1}, \ldots L_{k 5}, \ldots\right) \\
& F=f\left(x_{1}, x_{2}, \ldots x_{k}\right)
\end{aligned}
$$

The differential dF of the multivariate function F can be expressed as

$$
\begin{aligned}
\mathrm{dF} & =\frac{\partial \mathrm{F}}{\partial \mathrm{R}_{1}} \mathrm{dR}_{1}+\frac{\partial \mathrm{F}}{\partial \mathrm{R}_{2}} \mathrm{dR}_{2}+\ldots .+\frac{\partial \mathrm{F}}{\partial \mathrm{R}_{\mathrm{k} 1}} \mathrm{dR}_{\mathrm{k} 1} \\
& +\frac{\partial \mathrm{F}}{\partial \mathrm{C}_{1}} \mathrm{dC}_{1}+\frac{\partial \mathrm{F}}{\partial \mathrm{C}_{2}} \mathrm{dC}_{2}+\ldots .+\frac{\partial \mathrm{F}}{\partial \mathrm{C}_{\mathrm{k} 2}} \mathrm{dRC}_{\mathrm{k} 2} \quad \mathrm{dF}=\sum_{i=1}^{k} \frac{\partial \mathrm{~F}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx} \\
& +\ldots \ldots . .
\end{aligned}
$$

Define the standard sensitivity function as

$$
\mathrm{S}_{x}^{f}=\frac{\partial f}{\partial x} \cdot \frac{x}{f}
$$

S_{x}^{f} Is widely used except when x or f assume extreme values of 0 or ∞

Define the derivative sensitivity function as

$$
\boldsymbol{s}_{x}^{f}=\frac{\partial f}{\partial x}
$$

s_{x}^{f}
Is more useful when x or fideally assume extreme values of 0 or ∞

Consider the normalized differential

dF

$$
\frac{\mathrm{dF}}{\mathrm{~F}} \cong \frac{\Delta \mathrm{~F}}{\mathrm{~F}}
$$

This approximates the relative (percent if multiply by 100) change in F due to changes in ALL components
$\frac{\mathrm{dF}}{\mathrm{F}}=\frac{\sum_{i=1}^{k} \frac{\partial \mathrm{~F}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}_{\mathrm{i}}}{\mathrm{F}}=\sum_{i=1}^{k} \frac{\partial \mathrm{~F}}{\partial \mathrm{x}_{\mathrm{i}}} \bullet \frac{\mathrm{d} \mathrm{x}_{\mathrm{i}}}{\mathrm{F}} \stackrel{A l x_{i} \neq 0, \infty}{=} \sum_{i=1}^{k}\left(\frac{\partial \mathrm{~F}}{\partial \mathrm{x}_{\mathrm{i}}} \bullet \frac{\mathrm{x}_{\mathrm{i}}}{\mathrm{F}}\right) \bullet \frac{\mathrm{d} \mathrm{x}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}}$
This can be expressed in terms of the standard sensitivity function as

$$
\frac{\mathrm{dF}}{\mathrm{~F}} \stackrel{\mathrm{All} \mathrm{x}_{\mathrm{i}} \neq 0, \infty}{=} \sum_{i=1}^{k}\left(\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}} \bullet \frac{\mathrm{~d} \mathrm{x}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}}\right)
$$

This relates the relative (percent if multiply by 100) change in F to the sensitivity function and the relative (percent if multiply by 100) change in each component

Consider the normalized differential

$$
\frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}} \bullet \frac{\mathrm{dx}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}}\right)
$$

This can be expressed as
$\frac{\mathrm{dF}}{\mathrm{F}}=\left(\sum_{\text {all resisiors }} \mathrm{S}_{\mathrm{R}_{\mathrm{i}}}^{\mathrm{f}} \bullet \frac{\mathrm{dR}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}}\right)+\left(\sum_{\text {all capacitors }} \mathrm{S}_{\mathrm{C}_{\mathrm{i}}}^{\mathrm{f}} \bullet \frac{\mathrm{dC}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{i}}}\right)+\left(\sum_{\text {all opanpps }} \mathrm{S}_{\tau_{\mathrm{i}}}^{\mathrm{f}} \bullet \frac{\mathrm{d} \tau_{\mathrm{i}}}{\tau_{\mathrm{i}}}\right)+\ldots$
Often interested in $\frac{\mathrm{dF}}{\mathrm{F}}$ evaluated at the ideal (or nominal value)
If the nominal values are all not extreme (0 or ∞), then

$$
\frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\left.\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\bar{X}_{N}} \bullet \frac{\mathrm{dx}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{iN}}}\right)
$$

The normalized differential - a different perspective

$$
\frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\left.\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\widehat{X}_{N}} \bullet \frac{\mathrm{dx}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{iN}}}\right)
$$

Consider the multivariate Taylors series expansion of F

$$
\begin{aligned}
& \mathrm{F}(\overline{\mathrm{X}}) \cong \mathrm{F}\left(\overline{\mathrm{X}}_{\mathrm{N}}\right)+\left.\sum_{i=1}^{k} \frac{\partial F}{\partial x_{i}}\right|_{\overline{\mathrm{X}}_{\mathrm{N}}}\left(x_{i}-x_{i N}\right) \\
& \mathrm{F}(\stackrel{\rightharpoonup}{\mathrm{X}})-\left.\mathrm{F}\left(\overrightarrow{\mathrm{X}}_{\mathrm{N}}\right) \cong \sum_{i=1}^{k} \frac{\partial F}{\partial x_{i}}\right|_{\overline{\mathrm{X}}_{\mathrm{N}}}\left(x_{i}-x_{i N}\right) \\
& \left.\Delta \mathrm{F}(\overline{\mathrm{X}}) \cong \sum_{i=1}^{k} \frac{\partial F}{\partial x_{i}}\right|_{X_{\mathrm{N}}} \Delta x_{i}
\end{aligned}
$$

The normalized differential - a different perspective

$$
\frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\left.\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\bar{X}_{N}} \bullet \frac{\mathrm{dx}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{iN}}}\right)
$$

Consider the multivariate Taylors series expansion of F

$$
\begin{gathered}
\left.\Delta \mathrm{F}(\overline{\mathrm{X}}) \cong \sum_{i=1}^{k} \frac{\partial F}{\partial x_{i}}\right|_{\bar{X}_{N}} \Delta x_{i} \\
\left.\frac{\Delta \mathrm{~F}(\overline{\mathrm{X}})}{\mathrm{F}} \cong \sum_{i=1}^{k} \frac{\partial F}{\partial x_{i}}\right|_{\mathrm{X}_{\mathrm{N}}} \frac{\Delta x_{i}}{\mathrm{~F}}=\left.\sum_{i=1}^{k} \frac{\partial F}{\partial x_{i}}\right|_{\bar{X}_{\mathrm{N}}} \frac{x_{i}}{x_{i}} \frac{\Delta x_{i}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\left.\frac{\partial F}{\partial x_{i}}\right|_{\mathrm{X}_{\mathrm{N}}} \frac{x_{i}}{\mathrm{~F}}\right) \frac{\Delta x_{i}}{x_{i}} \\
\frac{\Delta \mathrm{~F}}{\mathrm{~F}} \cong \sum_{i=1}^{k}\left(\left.\mathrm{~S}_{\mathrm{x}_{1}}^{\mathrm{f}}\right|_{\bar{X}_{N}}\right) \frac{\Delta x_{i}}{x_{i}}
\end{gathered}
$$

Note this is essentially the same expression that was arrived at from the sensitivity analysis approach

Dependent on circuit structure (for some circuits, also not dependent on components)
The sensitivity functions are thus useful for comparing different circuit structures

The variability which is the product of the sensitivity function and the normalized component differential is more important for predicting circuit performance

Variability Formulation

$$
\begin{gathered}
\mathrm{V}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}=\left.\mathrm{S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\widehat{X}_{N}} \bullet \frac{\mathrm{dx}_{\mathrm{i}}}{\mathrm{X}_{\mathrm{iN}}} \frac{\mathrm{dF}}{\mathrm{~F}}=\left.\sum_{i=1}^{k} \mathrm{~V}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\bar{X}_{N}}
\end{gathered}
$$

Variability includes effects of both circuit structure and components on performance

Often interested in circuits whose performance is not affected by changes in component values. In such cases:

If component variations are small, high sensitivities are acceptable

If component variations are large, low sensitivities are usually critical

Example

If $\omega_{0}=1 / R C$, determine $S_{R}^{\omega_{0}}$ and $S_{C}^{\omega_{0}}$

$$
\begin{aligned}
& \mathrm{S}_{R}^{\omega_{0}}=\frac{\partial \omega_{0}}{\partial R} \bullet \frac{R}{\omega_{0}} \\
& \mathrm{~S}_{R}^{\omega_{0}}=\left(\frac{-1}{R^{2} C}\right) \bullet \frac{R}{\omega_{0}} \\
& \mathrm{~S}_{R}^{\omega_{0}}=-\frac{1}{R}\left(\frac{1}{R C}\right) \cdot \frac{R}{\omega_{0}}=-\frac{1}{R}\left(\omega_{0}\right) \bullet \frac{R}{\omega_{0}}=-1
\end{aligned}
$$

Likewise

$$
\mathrm{S}_{C}^{\omega_{0}}=-1
$$

Example

$$
T(s)=\frac{1}{1+R C s}=\frac{\omega_{0}}{s+\omega_{0}}
$$

$$
\frac{\mathrm{d} \omega_{0}}{\omega_{0}}=\left.\sum_{i=1}^{k} \mathrm{~V}_{\mathrm{x}_{\mathrm{i}}}^{\omega_{0}}\right|_{\bar{X}_{N}}
$$

$$
\mathrm{S}_{R}^{\omega_{0}}=-1 \quad \mathrm{~S}_{C}^{\omega_{0}}=-1
$$

Thus a 1% increase in R will cause approximately a 1% decrease in ω_{0} a 1% increase in C will cause approximately a 1% decrease in ω_{0} a 1% increase in both C and R will cause approximately a 2% decrease in ω_{0}

Example

$$
T(s)=K \frac{\frac{1}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{1}}+\frac{1-K}{R_{2} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}
$$

$$
\mathrm{Q}=\frac{1}{\sqrt{\frac{R_{2} C_{2}}{R_{1} C_{1}}}+\sqrt{\frac{R_{1} C_{2}}{R_{2} C_{1}}}+(1-K) \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}}
$$

$$
\omega_{0}=\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}}
$$

Determine $S_{C_{1}}^{\omega_{0}} \quad S_{C_{2}}^{\omega_{0}} \quad \boldsymbol{S}_{R_{1}}^{\omega_{0}} \quad \boldsymbol{S}_{R_{2}}^{\omega_{0}}$

$$
\begin{array}{ll}
\mathrm{S}_{C_{1}}^{\omega_{0}}=\frac{\partial\left[\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}}\right]}{\partial \mathrm{C}_{1}} \frac{\mathrm{C}_{1}}{\omega_{0}} & \mathrm{~S}_{C_{1}}^{\omega_{0}}=-1 / 2 \frac{1}{\sqrt{R_{1} R_{2} \mathrm{C}_{2}}}\left(\frac{1}{\sqrt{C_{1}} C_{1}}\right) \frac{\mathrm{C}_{1}}{\omega_{0}} \\
\mathrm{~S}_{C_{1}}^{\omega_{0}}=\frac{1}{\sqrt{R_{1} R_{2} C_{2}}} \frac{\partial\left[\frac{1}{\sqrt{\mathrm{C}_{1}}}\right]}{\partial \mathrm{C}_{1}} \frac{\mathrm{C}_{1}}{\omega_{0}} & \mathrm{~S}_{C_{1}}^{\omega_{0}}=-1 / 2 \frac{1}{\sqrt{R_{1} R_{2} \mathrm{C}_{2} \mathrm{C}_{1}}}\left(\frac{1}{\mathrm{C}_{1}}\right) \frac{\mathrm{C}_{1}}{\omega_{0}} \\
\mathrm{~S}_{C_{1}}^{\omega_{0}}=\frac{1}{\sqrt{R_{1} R_{2} C_{2}}}\left(-1 / 2 C_{1}^{-3 / 2}\right) \frac{\mathrm{C}_{1}}{\omega_{0}} & \mathrm{~S}_{C_{1}}^{\omega_{0}}=-1 / 2 \omega_{0}\left(\frac{1}{\mathrm{C}_{1}}\right) \frac{\mathrm{C}_{1}}{\omega_{0}} \\
\mathrm{~S}_{C_{1}}^{\omega_{0}}=-1 / 2
\end{array}
$$

Example

$$
\mathrm{T}(\mathrm{~s})=\mathrm{K} \frac{\frac{1}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}{\mathrm{~s}^{2}+\mathrm{s}\left[\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1}}+\frac{1-\mathrm{K}}{\mathrm{R}_{2} \mathrm{C}_{2}}\right]+\frac{1}{\mathrm{R}_{1} R_{2} \mathrm{C}_{1} C_{2}}}
$$

$$
Q=\frac{1}{\sqrt{\frac{R_{2} C_{2}}{R_{1} C_{1}}}+\sqrt{\frac{R_{1} C_{2}}{R_{2} C_{1}}}+(1-K) \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}}
$$

$$
\omega_{0}=\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}}
$$

Determine

$$
S_{C_{1}}^{\omega_{0}}=-1 / 2
$$

Likewise

$$
\mathrm{S}_{C_{2}}^{\omega_{0}}=\mathrm{S}_{R_{1}}^{\omega_{0}}=\mathrm{S}_{R_{2}}^{\omega_{0}}=-1 / 2
$$

Observation:

$$
\sum_{\text {All resistors }} \mathrm{S}_{R_{i}}^{a_{0}}=-1 \quad \sum_{\text {All capacitiors }} \mathrm{S}_{C_{i}}^{\alpha_{0}}=-1
$$

$$
\mathrm{S}_{R_{1}}^{\omega_{0}}=-1 / 2
$$

$$
S_{C_{1}}^{\omega_{0}}=-1 / 2
$$

$$
S_{R_{2}}^{\omega_{0}}=-1 / 2
$$

$$
S_{C_{2}}^{\omega_{0}}=-1 / 2
$$

$$
\sum_{\text {All resistors }} S_{R_{i}}^{\omega_{0}}=-1 \quad \sum_{\text {All capacitors }} S_{C_{i}}^{\omega_{0}}=-1
$$

At this stage, this is just an observation about summed sensitivities but later will establish some fundamental properties of summed sensitivities

Consider

$$
\frac{\mathrm{dF}}{\mathrm{~F}}=\left(\sum_{\text {all resistors }} \mathrm{S}_{\mathrm{R}_{\mathrm{i}}}^{\mathrm{f}} \bullet \frac{\mathrm{dR}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}}\right)+\left(\sum_{\text {all capacitors }} \mathrm{S}_{\mathrm{C}_{\mathrm{i}}}^{\mathrm{f}} \bullet \frac{\mathrm{dC}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{i}}}\right)+\left(\sum_{\text {all opamps }} \mathrm{S}_{\tau_{\mathrm{i}}}^{\mathrm{i}} \bullet \frac{\mathrm{~d} \tau_{\mathrm{i}}}{\tau_{\mathrm{i}}}\right)+\ldots
$$

The nominal value of the time constant of the op amps is 0 so this expression can not be evaluated at the ideal (nominal) value of $\mathrm{GB}=\infty$ (equivalently $\mathrm{T}=0$)

Let $\left\{x_{i}\right\}$ be the components in a circuit whose nominal value is not 0
Let $\left\{y_{i}\right\}$ be the components in a circuit whose nominal value is 0

$$
\begin{gathered}
\frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k x} \frac{\partial \mathrm{~F}}{\partial \mathrm{x}_{\mathrm{i}}} \bullet \frac{\mathrm{~d} \mathrm{x}_{\mathrm{i}}}{\mathrm{~F}}+\sum_{i=1}^{k y} \frac{\partial \mathrm{~F}}{\partial \mathrm{y}_{\mathrm{i}}} \bullet \frac{\mathrm{dy}_{\mathrm{i}}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\frac{\partial \mathrm{~F}}{\partial \mathrm{x}_{\mathrm{i}}} \bullet \frac{\mathrm{x}_{\mathrm{i}}}{\mathrm{~F}}\right) \bullet \frac{\mathrm{d} \mathrm{x}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}}+\frac{1}{\mathrm{~F}} \sum_{i=1}^{k y} \frac{\partial \mathrm{~F}}{\partial y_{\mathrm{i}}} \mathrm{dy}_{\mathrm{i}} \\
\frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k x}\left(\left.\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\bar{X}_{N}, \overline{\mathrm{x}}_{\mathrm{N}}=0} \bullet \frac{\mathrm{~d} \mathrm{x}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}}\right)+\frac{1}{\mathrm{~F}_{\mathrm{N}}} \sum_{i=1}^{k y}\left(\left.s_{\mathrm{y}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\bar{X}_{N}, \overline{\mathrm{Y}}_{\mathrm{N}}=0} \bullet \mathrm{y}_{\mathrm{i}}\right)
\end{gathered}
$$

This expression can be used for predicting the effects of all components in a circuit Can set $Y_{N}=0$ before calculating $S_{x_{i}}^{\dagger}$ functions

$$
\frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\left.\mathrm{~S}_{\mathrm{x}_{i}}^{f}\right|_{\bar{X}_{N}} \bullet \frac{\mathrm{~d} \mathrm{x}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}}\right)+\frac{1}{F_{\mathrm{N}}} \sum_{i=1}^{k y}\left(\left.\Delta_{\mathrm{y}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\mathrm{r}_{\mathrm{N}}=0} \bullet \mathrm{y}_{\mathrm{i}}\right)
$$

Low sensitivities in a circuit are often preferred but in some applications, low sensitivities would be totally unacceptable

Examples where low sensitivities are unacceptable are circuits where a charactristics F must be tunable or adjustable!

Some useful sensitivity theorems

$$
\begin{aligned}
& S_{x}^{\prime \prime}=S_{x}^{\prime} \\
& S_{x}^{n \prime}=n \cdot S_{x}^{t} \\
& S_{x}^{\prime \prime \prime}=-S_{x}^{\prime} \\
& S_{x}^{\sqrt{f}}=\frac{1}{2} S_{x}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } k \text { is a constant }
\end{aligned}
$$

Some useful sensitivity theorems (cont)

$$
S_{x}^{f 9}=S_{x}^{\prime}-S_{x}^{g}
$$

$$
S_{x}^{\sum_{x=1}^{k} f_{i}}=\frac{\sum_{i=1}^{k} f_{i} S_{x}^{f_{i}}}{\sum_{i=1}^{k} f_{i}}
$$

$$
S_{1 / x}^{f}=-S_{x}^{f}
$$

Stay Safe and Stay Healthy !

End of Lecture 19

Example:

Ideally $\quad I(s)=-\frac{1}{R C s}=-\frac{I_{0}}{s} \quad I_{0}$ termed the unity gain freq of integrator

$$
I_{0}=\frac{1}{R C}
$$

I_{0} is one of the most important parameters of an integrator used in a filter
Assume ideally $\mathrm{R}=1 \mathrm{~K}, \mathrm{C}=3.18 \mathrm{nF}$ so that $\mathrm{I}_{\mathrm{O}}=50 \mathrm{KHz}$
Assume actually $\mathrm{GB}=600 \mathrm{KHz}, \mathrm{R}=1.05 \mathrm{~K}$, and $\mathrm{C}=3.3 \mathrm{nF}$
a) Determine an approximation to the actual unity gain frequency using a sensitivity analysis
b) Write an analytical expression for the actual unity gain frequency

Example:

Assume ideally $\mathrm{R}=1 \mathrm{~K}, \mathrm{C}=3.18 \mathrm{nF}$ so that $\mathrm{I}_{\mathrm{O}}=50 \mathrm{KHz}$
Actually $\mathrm{GB}=600 \mathrm{KHz}, \mathrm{R}=1.05 \mathrm{~K}$, and $\mathrm{C}=3.3 \mathrm{nF}$
Observe

$$
\begin{aligned}
& \frac{\Delta \mathrm{R}}{\mathrm{R}}=\frac{.05 \mathrm{~K}}{1 \mathrm{~K}}=.05 \\
& \frac{\Delta \mathrm{C}}{\mathrm{C}}=\frac{.12 \mathrm{nF}}{3.18 \mathrm{nF}}=.038 \\
& \frac{\mathrm{I}_{0}}{\mathrm{~GB}}=\tau \mathrm{I}_{0}=\frac{50 \mathrm{KHz}}{600 \mathrm{KHz}}=.083
\end{aligned}
$$

Example:

Ideally

$$
I(s)=-\frac{1}{R C s}=-\frac{I_{0}}{s}
$$

Solution:
Define $I_{O A}$ to be the actual unity gain frequency

$$
\begin{aligned}
& I_{0}=\frac{1}{R C} \\
& \frac{\mathrm{dF}}{\mathrm{~F}}=\sum_{i=1}^{k}\left(\left.\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\widehat{X}_{N}, \bar{\gamma}_{N}=0} \bullet \frac{\mathrm{dx}}{\mathrm{X}_{\mathrm{i}}}\right)+\frac{1}{\mathrm{~F}_{\mathrm{N}}} \sum_{i=1}^{k y}\left(\left.s_{\mathrm{y}_{\mathrm{i}} \mathrm{f}}^{\mathrm{f}}\right|_{\bar{X}_{N}, \bar{r}_{N}=0} \bullet \mathrm{y}_{\mathrm{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{S}_{\mathrm{R}}^{\mathrm{lof}^{\mathrm{A}}}\right|_{R_{N}, C_{N}, \tau=0}=\left.\mathrm{S}_{\mathrm{R}}^{\mathrm{l}_{\mathrm{o}}}\right|_{R_{N}, C_{N}} \\
& \left.\mathrm{~S}_{\mathrm{R}}^{\mathrm{R}^{0}}\right|_{R_{N}, C_{N}}=-1 \\
& \left.S_{C}^{\mathrm{O}_{0}}\right|_{R_{N}, C_{N}, \tau=0}=\left.S_{C}^{\mathrm{O}_{0}}\right|_{R_{N}, C_{N}} \\
& \left.\mathrm{~S}_{\mathrm{C}}^{\mathrm{C}_{0}}\right|_{R_{N}, C_{N}}=-1
\end{aligned}
$$

It remains to calculate $\left.\quad \boldsymbol{s}_{\tau}^{\mathrm{lOA}_{0}}\right|_{\bar{X}_{N}, \bar{r}_{N}=0}$

C
Example:

Ideally

$$
I(s)=-\frac{1}{R C s}=-\frac{I_{0}}{s}
$$

Solution:
Still need $\left.\quad \boldsymbol{s}_{\tau}^{0_{0 A}}\right|_{\bar{X}_{N}, \bar{Y}_{N}=0} \quad$ Define $\mathrm{I}_{0 \mathrm{~A}}$ to be the actual unity gain frequency

$$
\begin{aligned}
& I_{A}(s)=-\frac{1}{R C s+\tau s(1+R C s)} \\
& I_{A}(j \omega)=-\frac{1}{-\tau R C \omega^{2}+j(\omega R C+\tau \omega)} \\
& (\mathrm{RC})^{2} \tau^{2} \mathrm{I}_{\mathrm{OA}}^{4}+\mathrm{l}_{\mathrm{OA}}^{2}(\mathrm{RC}+\tau)^{2}=1 \\
& \left|I_{A}(j \omega)\right|^{2}=\frac{1}{(R C)^{2} \tau^{2} \omega^{4}+\omega^{2}(R C+\tau)^{2}} \\
& \left|I_{A}(j \omega)\right|^{2}=\frac{1}{(R C)^{2} \tau^{2} \omega^{4}+\omega^{2}(R C+\tau)^{2}} \underset{\text { defn }}{=} 1 \\
& \frac{1}{(\mathrm{RC})^{2} \tau^{2} \mathrm{I}_{\mathrm{OA}}^{4}+\mathrm{I}_{\mathrm{OA}}^{2}(\mathrm{RC}+\tau)^{2}}=1
\end{aligned}
$$

Example:

Solution:
Still need $\left.\quad \boldsymbol{s}_{\tau}^{\mathrm{l}_{\mathrm{OA}}}\right|_{\bar{X}_{N}, \bar{Y}_{N}=0}$
Define $I_{O A}$ to be the actual unity gain frequency

$$
\begin{array}{r}
\left.(\mathrm{RC})^{2} \tau^{2}\right|_{\mathrm{OA}} ^{4}+\left.\right|_{\mathrm{OA}} ^{2}(\mathrm{RC}+\tau)^{2}=1 \\
\left.\quad \boldsymbol{s}_{\tau}^{\mathrm{I}_{\mathrm{OA}}}\right|_{\bar{X}_{N}, \bar{Y}_{\mathrm{N}}=0}=\left.\left(\frac{\partial \mathrm{l}_{\mathrm{OA}}}{\partial \tau}\right)\right|_{\bar{X}_{N}, \bar{Y}_{\mathrm{N}}=0}
\end{array}
$$

$(\mathrm{RC})^{2} \tau^{2} 4 \mathrm{I}_{\mathrm{OA}}^{3}\left(\frac{\partial \mathrm{I}_{\mathrm{OA}}}{\partial \tau}\right)+2 \tau(\mathrm{RC})^{2} \mathrm{I}_{\mathrm{OA}}^{4}+2 \mathrm{I}_{\mathrm{OA}}^{1}\left(\frac{\partial \mathrm{I}_{\mathrm{OA}}}{\partial \tau}\right)(\mathrm{RC}+\tau)^{2}+2(\mathrm{RC}+\tau) \mathrm{I}_{\mathrm{OA}}^{2}=0$
Evaluating at $\quad \vec{X}_{N}, \overrightarrow{\mathrm{Y}}_{\mathrm{N}}=0$

$$
\begin{aligned}
& 2 \mathrm{I}_{\mathrm{O}}^{1}\left(\left.\frac{\partial \mathrm{I}_{\mathrm{OA}}}{\partial \tau}\right|_{\bar{X}_{N}, \bar{Y}_{N}=0}\right)(\mathrm{RC})^{2}+2(\mathrm{RC}) \mathrm{I}_{\mathrm{O}}^{2}=0 \\
& \quad\left(\left.\frac{\partial \mathrm{I}_{\mathrm{OA}}}{\partial \tau}\right|_{\bar{X}_{N}, \bar{Y}_{N}=0}\right)=\frac{-\mathrm{I}_{\mathrm{O}}}{\mathrm{RC}}=\left.s_{\tau}^{\mathrm{I}_{\mathrm{OA}}}\right|_{\bar{X}_{N}, \bar{Y}_{N}=0}=-\mathrm{l}_{\mathrm{O}}^{2}
\end{aligned}
$$

Example:
Ideally

$$
I(s)=-\frac{1}{R C s}=-\frac{I_{0 N}}{s}
$$

Solution:

$$
\left.\mathrm{S}_{\mathrm{R}}^{\mathrm{l}_{0}}\right|_{R_{N}, C_{N}}=\left.\mathrm{S}_{\mathrm{C}}^{\mathrm{C}_{0}^{0}}\right|_{R_{N}, C_{N}}=-\left.1 \quad \boldsymbol{s}_{\tau}^{\mathrm{OAA}^{\mathrm{A}}}\right|_{\bar{X}_{N}, \bar{Y}_{N}=0}=-\mathrm{I}_{\mathrm{ON}}^{2}
$$

$$
\frac{\Delta R}{R}=.05 \quad \frac{\Delta C}{C}=.038 \quad \tau l_{0}=.083
$$

$$
\begin{aligned}
& \frac{\mathrm{dl}_{\mathrm{OA}}}{\mathrm{I}_{\mathrm{OA}}}=[-1 \mid] \cdot 05+[-1 \mid] .038+\frac{1}{\mathrm{I}_{\mathrm{ON}}}\left(-\mathrm{I}_{\mathrm{ON}}^{2} \bullet \tau\right) \\
& \frac{\mathrm{dl}_{\mathrm{OA}}}{\mathrm{I}_{\mathrm{OA}}}=[-1 \mid] .05+[-1 \mid] .038+(-.083) \\
& \frac{\mathrm{dl}_{\mathrm{OA}}}{\mathrm{I}_{\mathrm{OA}}}=-.088-.083 \sim \text { Due to passives }
\end{aligned}
$$

Example:

Solution:

$$
\begin{aligned}
& \frac{\mathrm{d}_{\mathrm{OA}}}{\mathrm{I}_{\mathrm{OA}}}=-.171 \quad \mathrm{I}_{\mathrm{ON}}=50 \mathrm{KHz} \\
& \mathrm{I}_{\mathrm{OA}} \cong 0.829 \mathrm{I}_{\mathrm{ON}}=41.45 \mathrm{KHz}
\end{aligned}
$$

Note that with the sensitivity analysis, it was not necessary to ever determine I_{OA} !!
a) Determine an approximation to the actual unity gain frequency using a sensitivity analysis
b) Write an analytical expression for the actual unity gain frequency

$$
(\mathrm{RC})^{2} \tau^{2} \mathrm{I}_{\mathrm{OA}}^{4}+\mathrm{l}_{\mathrm{OA}}^{2}(\mathrm{RC}+\tau)^{2}=1
$$

Must solve this quadratic for $\mathrm{I}_{0 \mathrm{~A}}$ Solving, obtain $\mathrm{I}_{\mathrm{OA}}=42.6 \mathrm{KHz}$

Note this is close to the value obtained with the sensitivity analysis
Although in this simple numerical example, it may have been easier to go directly to this expression, in more complicated circuits sensitivity analysis is much easier

Example:

- Note that with the sensitivity analysis, it was not necessary to ever determine $\mathrm{I}_{0 \mathrm{~A}}$!!
- The sensitivity analysis was analytical, and only at the end was a numerical result obtained
- A parametric solution is usually necessary to compare different structures
- Though a closed-form analytical expression for I_{OA} could have been obtained for this simple circuit, closed-form solutions for parameters of interest often do not exist !
- Though the active sensitivity analysis was tedious, major simplifications for active sensitivity analysis will be discussed later.

How can sensitivity analysis be used to compare the performance of different circuits?

Circuits have many sensitivity functions

If two circuits have exactly the same number of sensitivity functions and all sensitivity functions in one circuit are lower than those in the other circuit, then the one with the lower sensitivities is a less sensitive circuit

But usually this does not happen !

Designers would like a single metric for comparing two circuits !

Dependent on circuit structure (for some circuits, also not dependent on components)

Dependent only on components (not circuit structure)

Consider:

$$
\begin{array}{r}
T(s)=\frac{1}{1+R C s} \\
T(s)=\frac{\omega_{0}}{s+\omega_{0}} \\
\omega_{0}=\frac{1}{R C}
\end{array}
$$

$$
\omega_{0}=\frac{1}{R C}
$$

$$
\mathrm{S}_{\mathrm{R}}^{\omega_{0}}=-1
$$

$$
\mathrm{S}_{\mathrm{C}}^{\omega_{0}}=-1
$$

$$
\frac{\mathrm{d} \omega_{0}}{\omega_{0}}=\sum_{i=1}^{2}\left(\left.\widehat{\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{a_{\mathrm{i}}}}\right|_{\bar{x}_{N}} \cdot \frac{\mathrm{~d} \mathrm{x}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{iN}}}\right.
$$

$$
\frac{d \omega_{0}}{\omega_{0}}=[-1] \cdot \frac{d R}{R_{N}}+[-1] \cdot \square \frac{d C}{C_{N}}
$$

Dependent only on components (not circuit structure)

Dependent only on circuit structure

Dependent on circuit structure
(for some circuits, also not dependent on components)

Consider now:

Dependent only on components (not circuit structure)

$$
\begin{array}{r}
T(s)=\frac{\frac{R_{2}}{R_{1}+R_{2}}}{1+\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}} C\right) s} \\
T(s)=\frac{R_{2}}{R_{1}+R_{2}} \bullet \frac{\omega_{0}}{s+\omega_{0}} \\
\omega_{0}=\frac{R_{1}+R_{2}}{R_{1} R_{2} C}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{R}_{1}}^{\omega_{0}}=? \quad \omega_{0}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \mathrm{C}} \mathrm{C} \\
& \omega_{0}=\frac{\mathrm{G}_{1}+\mathrm{G}_{2}}{C} \\
& \mathrm{~S}_{\mathrm{R}_{1}}^{\omega_{0}}=-\mathrm{S}_{\mathrm{G}_{1}}^{\omega_{0}} \\
& \mathrm{~S}_{\mathrm{G}_{1}}^{\omega_{0}}=\mathrm{S}_{\mathrm{G}_{1}}^{\mathrm{G}_{1}+\mathrm{G}_{2}} \\
& \mathrm{~S}_{\mathrm{G}_{1}}^{\mathrm{G}_{1}+\mathrm{G}_{2}}=\left(\frac{\partial\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)}{\partial G_{1}}\right) \frac{\mathrm{G}_{1}}{\mathrm{G}_{1}+\mathrm{G}_{2}}=\frac{\mathrm{G}_{1}}{\mathrm{G}_{1}+\mathrm{G}_{2}} \\
& \mathrm{~S}_{R_{1}}^{\omega_{0}}=-\frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Note this is dependent upon the components as well! Actually dependent upon component ratio!

Theorem: If $\mathrm{f}\left(\mathrm{x}_{1}, . . \mathrm{x}_{\mathrm{m}}\right)$ can be expressed as $\quad f=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{m}^{\alpha_{m}}$ where $\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{m}\right\}$ are real numbers, then $S_{x_{i}}^{f}$ is not dependent
upon any of the variables in the set $\left\{x_{1}, x_{m}\right\}$ upon any of the variables in the set $\left\{x_{1}, . . x_{m}\right\}$

Proof:

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{x}_{\mathrm{i}}}^{f}=\mathrm{S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{X}_{\alpha_{i}}} & \mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{f}=\alpha_{i} \\
\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{X}_{i_{i}}^{\alpha_{i}}}=\frac{\partial \mathrm{X}_{\mathrm{i}}^{\alpha_{i}}}{\partial \mathrm{x}_{\mathrm{i}}} \cdot \frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{X}_{\mathrm{i}}^{\alpha_{i}}} &
\end{array}
$$

$$
\mathrm{S}_{\mathrm{X}_{\mathrm{i}}}^{\mathrm{X}_{i}^{\alpha_{i}}}=\alpha_{i} \mathrm{X}_{\mathrm{i}}^{\alpha_{i}-1} \cdot \frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{X}_{\mathrm{i}}^{\alpha_{i}}}
$$ correct

$$
\mathrm{S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{X}_{\mathrm{i}}^{\alpha_{i}}}=\alpha_{i}
$$

It is often the case that functions of interest are of the form expressed in the hypothesis of the theorem, and in these cases the previous claim is

Theorem: If $\mathrm{f}\left(\mathrm{x}_{1}, . . \mathrm{x}_{\mathrm{m}}\right)$ can be expressed as $\quad f=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{m}^{\alpha_{m}}$
where $\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{m}\right\}$ are real numbers, then the sensitivity terms in

$$
\frac{\mathrm{df}}{\mathrm{f}}=\sum_{i=1}^{k}\left(\left.\mathrm{~S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|_{\bar{X}_{N}} \bullet \frac{\mathrm{dx}_{\mathrm{i}}}{\mathrm{X}_{\mathrm{iN}}}\right)
$$

are dependent only upon the circuit architecture and not dependent upon the components and and the right terms are dependent only upon the components and not dependent upon the architecture

This observation is useful for comparing the performance of two or more circuits where the function f shares this property

Metrics for Comparing Circuits

Summed Sensitivity

$$
\rho_{S}=\sum_{i=1}^{m} S_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}
$$

Not very useful because sum can be small even when individual sensitivities are large

Schoeffler Sensitivity

$$
\rho=\sum_{i=1}^{m}\left|\mathbf{S}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{f}}\right|
$$

Strictly heuristic but does differentiate circuits with low sensitivities from those with high sensitivities

Metrics for Comparing Circuits

$$
P=\sum_{i=1}^{m}\left|囚_{x_{i}}\right|
$$

Often will consider several distinct sensitivity functions to consider effects of different components

$$
\begin{aligned}
& \rho_{R}=\sum_{\text {All resistors }}\left|S_{\mathrm{R}_{\mathrm{i}}}^{\mathrm{f}}\right| \\
& \rho_{C}=\sum_{\text {All capacitors }}\left|S_{\mathrm{C}_{\mathrm{i}}}^{\mathrm{f}}\right| \\
& \rho_{O A}=\sum_{\text {All op amps }}\left|\boldsymbol{S}_{\tau_{\mathrm{i}}}^{\mathrm{f}}\right|
\end{aligned}
$$

Homogeniety (defn)
A function f is homogeneous of order m in the n variables $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ if
$f\left(\lambda x_{1}, \lambda x_{2}, \ldots \lambda x_{n}\right)=\lambda^{m f}\left(x_{1}, x_{2}, \ldots x_{n}\right)$

Note: f may be comprised of more than n variables

Theorem: If a function f is homogeneous of order m in the n variables $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ then

$$
\sum_{n=1}^{n} S_{x_{1}}^{t}=m
$$

Proof:

$$
\mathrm{f}\left(\lambda \mathrm{x}_{1}, \lambda \mathrm{x}_{2}, \ldots \lambda \mathrm{x}_{\mathrm{n}}\right)=\lambda^{m} \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)
$$

Differentiate WRT λ

$$
\begin{gathered}
\frac{\partial\left(\mathrm{f}\left(\lambda \mathrm{x}_{1}, \lambda \mathrm{x}_{2}, \ldots \lambda \mathrm{x}_{\mathrm{n}}\right)\right)}{\partial \lambda}=m \lambda^{m-1} \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right) \\
\frac{\partial \mathrm{f}}{\partial \lambda \mathrm{x}_{1}} \mathrm{x}_{1}+\frac{\partial \mathrm{f}}{\partial \lambda \mathrm{x}_{2}} \mathrm{x}_{2}+\ldots+\frac{\partial \mathrm{f}}{\partial \lambda \mathrm{x}_{\mathrm{n}}} \mathrm{x}_{\mathrm{n}}=m \lambda^{m-1} \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)
\end{gathered}
$$

$$
\frac{\partial f}{\partial \lambda x_{1}} x_{1}+\frac{\partial f}{\wp \lambda x_{2}} x_{2}+\ldots+\frac{\partial f}{\partial \lambda x_{n}} x_{n}=m \lambda^{m-1} f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

Simplify notation

$$
\frac{\partial f}{\partial \lambda x_{1}} x_{1}+\frac{\partial f}{\partial \lambda x_{2}} x_{2}+\ldots+\frac{\partial f}{\partial \lambda x_{n}} x_{n}=m \lambda^{m} \mathrm{f}
$$

Divide by f

$$
\frac{\partial f}{\lambda x_{1}} \frac{x_{1}}{f}+\frac{\partial f}{\lambda \mathrm{x}_{2}} \frac{\mathrm{x}_{2}}{\mathrm{f}}+\ldots+\frac{\partial \mathrm{f}}{\lambda \mathrm{x}_{\mathrm{n}}} \frac{\mathrm{x}_{\mathrm{n}}}{\mathrm{f}}=m \lambda^{m}
$$

Since true for all λ, also true for $\lambda=1$, thus

$$
\frac{\partial f}{x_{1}} \frac{x_{1}}{f}+\frac{\partial f}{x_{2}} \frac{x_{2}}{f}+\ldots+\frac{\partial f}{x_{n}} \frac{x_{n}}{f}=m
$$

This can be expressed as

$$
\sum_{i=1}^{n} S_{x}^{\prime}=m
$$

Theorem: If a function f is homogeneous of order m in the n variables $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ then

$$
\begin{aligned}
& \sum_{i=1}^{n} S_{x_{1}}^{f}=m \\
& f\left(\lambda x_{1}, 2 x_{2}, \ldots, \ldots x_{n}\right)=\lambda^{\prime \prime f} f\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

The concept of homogeneity and this theorem were somewhat late to appear

Are there really any useful applications of this rather odd observation?

Let $\mathrm{T}(\mathrm{s})$ be a voltage or current transfer function

 (i.e. dimensionless)Observation: Impedance scaling does not change any of the following, provided Op Amps are ideal:

$$
T(s), T(j \omega),|T(j \omega)|, \omega_{0}, Q, p_{k}, z_{k}
$$

So, consider impedance scaling by a parameter λ

$$
\begin{gathered}
\mathrm{R} \rightarrow \lambda \mathrm{R} \\
\mathrm{~L} \rightarrow \lambda \mathrm{~L} \\
\mathrm{C} \rightarrow \mathrm{C} / \lambda
\end{gathered}
$$

For these impedance invariant functions

$$
f\left(\lambda x_{1}, \lambda x_{2}, \ldots \lambda x_{n}\right)=\lambda^{0} f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

Thus, all of these functions are homogeneous of order $\mathrm{m}=0$ in the impedances

Let T(s) be a Transresistance or Transconductance

 Transfer FunctionObservation: Impedance scaling does not change any of the following, provided Op Amps are ideal:

$$
\omega_{0}, Q, p_{k}, z_{k} \text {, band edge }
$$

(these are impedance invariant functions)
So, consider impedance scaling by a parameter λ

$$
\begin{gathered}
\mathrm{R} \rightarrow \lambda \mathrm{R} \\
\mathrm{~L} \rightarrow \lambda \mathrm{~L} \\
\mathrm{C} \rightarrow \mathrm{C} / \lambda
\end{gathered}
$$

For these impedance invariant functions

$$
f\left(\lambda x_{1}, \lambda x_{2}, \ldots \lambda x_{n}\right)=\lambda^{0} f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

Thus, all of these functions are homogeneous of order $\mathrm{m}=0$ in the impedances

Theorem 1: If all op amps in a filter are ideal, then ω_{0}, Q, BW, all band edges, and all poles and zeros are homogeneous of order 0 in the impedances.

Theorem 2: If all op amps in a filter are ideal and if $T(s)$ is a dimensionless transfer function, $\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{j} \omega),|\mathrm{T}(\mathrm{j} \omega)|, \angle \mathrm{T}(\mathrm{j} \omega)$, are homogeneous of order 0 in the impedances

Theorem 1: If all op amps in a filter are ideal, then ω_{0}, Q, BW, all band edges, and all poles and zeros are homogeneous of order 0 in the impedances.

Proof of Theorem 1

These functions are all impedance invariant so if follows trivially that they are homogeneous of order 0 in all of the impedances

Theorem 3: If all op amps in a filter are ideal and if $T(s)$ is an impedance transfer function, $\mathrm{T}(\mathrm{s})$ and $\mathrm{T}(\mathrm{j} \omega$) are homogeneous of order 1 in the impedances

Theorem 4: If all op amps in a filter are ideal and if $\mathrm{T}(\mathrm{s})$ is a conductance transfer function, $\mathrm{T}(\mathrm{s})$ and $\mathrm{T}(\mathrm{j} \omega$) are homogeneous of order -1 in the impedances

Corollary 1: If all op amps in an RC active filter are ideal and there are k_{1} resistors and k_{2} capacitors and if a function f is homogeneous of order 0 in the impedances, then

$$
\sum_{i=1}^{k} S_{R}^{\prime}=\sum_{i=1}^{\prime 2} S_{C}^{\prime}
$$

Corollary 2: If all op amps in an RC active filter are ideal and there are k_{1} resistors and k_{2} capacitors then

$$
\begin{aligned}
& \sum_{i=1}^{k_{1}} S_{R_{i}}^{Q}=0 \\
& \sum_{i=1}^{k_{2}} S_{C_{i}}^{Q}=0
\end{aligned}
$$

Corollary 1: If all op amps in an RC active filter are ideal and there are k_{1} resistors and k_{2} capacitors and if a function f is homogeneous of order 0 in the impedances, then

$$
\sum_{i=1}^{k} S_{R}^{\prime}=\sum_{i=1}^{\prime 2} S_{C}^{\prime}
$$

Corollary 2: If all op amps in an RC active filter are ideal and there are k_{1} resistors and k_{2} capacitors then

$$
\begin{aligned}
& \sum_{i=1}^{k_{1}} S_{R_{i}}^{Q}=0 \\
& \sum_{i=1}^{k_{2}} S_{C_{i}}^{Q}=0
\end{aligned}
$$

Proof of Corollary 1:

Corollary 1: If all op amps in an RC active filter are ideal and there are k_{1} resistors and k_{2} capacitors and if a function f is homogeneous of order 0 in the impedances, then

$$
\sum_{i=1}^{k_{1}} S_{R_{i}}^{f}=\sum_{i=1}^{k_{2}} S_{C_{i}}^{f}
$$

Proof:
Since f is homogenous of order zero in the impedances, $z_{1}, z_{2}, \ldots z_{k 1+k 2}$,

$$
\begin{array}{ll}
& \sum_{i=1}^{k_{1}+k_{2}} S_{z_{i}}^{f}=0 \\
\therefore & \sum_{i=1}^{k_{1}} S_{R_{i}}^{f}+\sum_{i=1}^{k_{2}} S_{1 C_{i}}^{f}=0 \\
\therefore & \sum_{i=1}^{k_{1}} S_{R_{i}}^{f}-\sum_{i=1}^{k_{2}} S_{C_{i}}^{f}=0
\end{array}
$$

Proof of Corollary 2:

Recall:

Frequency Scaling
$s \rightarrow \frac{s}{\eta}$

Frequency Scaling: Scaling all frequencydependent elements by a constant

$$
\begin{aligned}
& L \rightarrow \eta L \\
& C \rightarrow \eta C
\end{aligned}
$$

Theorem: If all components are frequency scaled, roots (poles and zeros) will move along a constant Q locus

Proof of Theorem:

$$
T_{F S}(s)=\left.T(s)\right|_{s=\frac{s}{\eta}}
$$

Proof of Corollary 2:

Recall:

Theorem: If all components are frequency scaled, roots (poles and zeros) will move along a constant Q locus

$$
\text { Proof: } \mathrm{T}_{\mathrm{FS}}(\mathrm{~s})=\left.\mathrm{T}(\mathrm{~s})\right|_{\mathrm{s}=\frac{\mathrm{s}}{\eta}}
$$

Let p be a pole (or zero) of $\mathrm{T}(\mathrm{s})$

$$
\begin{aligned}
& T(p)=0 \quad \text { consider } \quad p=\frac{p}{\eta} \\
& T_{F s}(s)=T\left(\frac{s}{\eta}\right)=T(s)
\end{aligned}
$$

Since true for any variable, substitute in p

$$
T_{F S}(p)=T\left(\frac{p}{\eta}\right)=T(p)=0
$$

Thus p is a pole (or zero) of $T_{\text {Fs }}(s)$

Proof of Corollary 2:

Recall:

Theorem: If all components are frequency scaled, roots (poles and zeros) will move along a constant Q locus

Proof: \quad Thus p is a pole (or zero) of $\mathrm{T}_{\mathrm{FS}}(\mathrm{s})$

$$
\begin{aligned}
& p=\frac{p}{\eta} \\
& p=p \eta
\end{aligned}
$$

Express p in polar form

$$
\begin{aligned}
& \mathrm{p}=r \mathrm{e}^{\mathrm{j} \beta} \\
& \mathrm{p}=\eta \mathrm{p}=\eta r \mathrm{e}^{\mathrm{j} \beta}
\end{aligned}
$$

Thus \mathbf{p} and \mathbf{p} have the same angle
Thus the scaled root has the same root Q

Proof of Corollary 2:

Impedance and Frequency Scaling
Recall:

Proof of Corollary 2:

Corollary 2: If all op amps in an RC active filter are ideal and there are k_{1} resistors and k_{2} capacitors then $\sum_{i=1}^{k_{2}} S_{C_{i}}^{Q}=0$ and $\sum_{i=1}^{k_{1}} S_{R_{i}}^{Q}=0$

Since impedance scaling does not change pole (or zero) Q, the pole (or zero) Q must be homogeneous of order 0 in the impedances
(For more generality, assume k_{3} inductors)

$$
\begin{equation*}
\sum_{i=1}^{k_{1}} S_{R_{i}}^{Q}+\sum_{i=1}^{k_{2}} S_{1 / C_{i}}^{Q}+\sum_{i=1}^{k_{3}} S_{L_{i}}^{Q}=0 \tag{1}
\end{equation*}
$$

Since frequency scaling does not change pole (or zero) Q, the pole (or zero) Q must be homogeneous of order 0 in the frequency scaling elements

$$
\begin{equation*}
\sum_{n=1}^{K} S_{C_{1}}^{o}+\sum_{i=1}^{k} S_{L-1}^{o}=0 \tag{2}
\end{equation*}
$$

Proof of Corollary 2:

$$
\begin{align*}
& \sum_{i=1}^{k_{1}} S_{R_{i}}^{Q}+\sum_{i=1}^{k_{2}} S_{1 / C_{i}}^{Q}+\sum_{i=1}^{k_{3}} S_{L_{i}}^{Q}=0 \tag{1}\\
& \sum_{i=1}^{k_{2}} S_{C_{i}}^{Q}+\sum_{i=1}^{k_{3}} S_{L_{i}}^{Q}=0 \tag{2}
\end{align*}
$$

From theorem about sensitivity of reciprocals, can write (1) as

$$
\begin{equation*}
\sum_{i=1}^{k} S_{R_{1}}^{\alpha}-\sum_{i=1}^{2} S_{C_{C}}^{\alpha}+\sum_{n=1}^{k_{1}^{2}} S_{L}^{Q}=0 \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that

$$
\begin{equation*}
\sum_{i=1}^{k} S_{R}^{\alpha}-2 \sum_{i=1}^{k} S_{L}^{\alpha}=0 \tag{4}
\end{equation*}
$$

Since RC network, it follows from (4) and (2) that

$$
\sum_{i=1}^{k_{1}} S_{R_{i}}^{Q}=0 \quad \sum_{i=1}^{k_{2}} S_{C_{i}}^{Q}=0
$$

